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I� Rprop

A� General Description

Rprop stands for �Resilient backpropagation� and is a lo�
cal adaptive learning scheme� performing supervised batch
learning in multi�layer perceptrons� For a detailed discus�
sion see also ���� ���� ���� The basic principle of Rprop is to
eliminate the harmful in	uence of the size of the partial
derivative on the weight step� As a consequence� only the
sign of the derivative is considered to indicate the direc�
tion of the weight update� The size of the weight change
is exclusively determined by a weight�speci
c� so�called
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where �E
�wij

�t�
denotes the summed gradient information

over all patterns of the pattern set ��batch learning���
It should be noted� that by replacing the �ij�t� by a

constant update�value�� equation ��� yields the so�called
�Manhattan��update rule�
The second step of Rprop learning is to determine

the new update�values �ij�t�� This is based on a sign�
dependent adaptation process� similar to the learning�rate
adaptation in ���� ����
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In words� the adaptation�rule works as follows� Every
time the partial derivative of the corresponding weight
wij changes its sign� which indicates that the last up�
date was too big and the algorithm has jumped over a

local minimum� the update�value �
�t�
ij is decreased by the

factor ��� If the derivative retains its sign� the update�
value is slightly increased in order to accelerate conver�
gence in shallow regions� Additionally� in case of a change
in sign� there should be no adaptation in the succeeding
learning step� In practice� this can be achieved by setting
�E
�wij

�t���
�� 
 in the above adaptation rule �see also the

description of the algorithm in the following section��

In order to reduce the number of freely adjustable pa�
rameters� often leading to a tedious search in parameter
space� the increase and decrease factor are set to 
xed
values� The choice of the decrease factor �� was lead by
the following considerations� If a jump over a minimum
occurred� the previous update�value was too large� For it
cannot be derived from gradient information how much
the minimum was missed� we have to estimate the cor�
rect value� In average it will be a good guess to halve
the update�value �maximum�likelihood estimator�� so we
choose �� �� 
��� The increase factor �� on the one hand�
has to be large enough to allow fast growth of the update�
value in shallow regions of the errorfunction� but on the
other hand the learning process can be considerably dis�
turbed� if a too large increase factor leads to persistent
changes of the direction of the weight�step� In several ex�
periments� the choice of �� � ��� gave very good results�
independent of the examined problem� Slight variations
of this value did neither improve nor deteriorate conver�
gence time� So in order to get parameter choice more sim�
ple� we decided to constantly 
x the increase parameter
to �� � ����

For Rprop tries to adapt its learning process to the
topology of the errorfunction� it follows the principle of
�batch learning� or �learning by epoch�� That means� that
weight�update and adaptation are performed after the gra�
dient information of the whole pattern set is computed�

B� Algorithm

The following pseudo�code fragment shows the kernel of
the RPROP adaptation and learning process� The min�
imum �maximum� operator is supposed to deliver the
minimum �maximum� of two numbers� the sign operator



returns ��� if the argument is positive� ��� if the argu�
ment is negative� and 
 otherwise�
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Until �converged�

C� Parameters

The Rprop algorithm takes two parameters� the initial
update�value �� and a limit for the maximum step size�
�max�

When learning starts� all update�values are set to an
initial value ��� Since �� directly determines the size
of the 
rst weight step� it should be chosen according to
the initial values of the weights themselves� for example
�� � 
�� �default setting�� The choice of this value is
rather uncritical� for it is adapted as learning proceeds�

In order to prevent the weights from becoming too large�
the maximum weight�step determined by the size of the
update�value� is limited� The upper bound is set by the
second parameter of Rprop� �max� The default upper
bound is set somewhat arbitrarily to �max � �
�
� Usu�
ally� convergence is rather insensitive to this parameter as
well� Nevertheless� for some problems it can be advanta�
geous to allow only very cautious �namely small� steps� in
order to prevent the algorithm getting stuck too quickly
in suboptimal local minima� The minimum step size is
constantly 
xed to �min � �e���

D� Discussion

To summarize� the basic principle of Rprop is the direct
adaptation of the weight update�values �ij� In contrast
to learning�rate based algorithms �as for example gradi�
ent descent�� Rprop modi
es the size of the weight�step
directly by introducing the concept of resilient update�
values� As a result� the adaptation e�ort is not blurred by
un�foreseeable gradient behaviour� Due to the clarity and
simplicity of the learning laws� there is only a slight ex�
pense in computation compared with ordinary backprop�
agation�
Besides fast convergence� one of the main advantages of

RPROP lies in the fact� that for many problems no choice
of parameters is needed at all to obtain optimal or at least
nearly optimal convergence times�
Another often discussed aspect of common gradient de�

scent is� that the size of the derivative decreases expo�
nentially with the distance between the weight and the
output�layer� due to the limiting in	uence of the slope of
the sigmoid activation function� Consequently� weights far
away from the output�layer are less modi
ed and do learn
much slower� Using RPROP� the size of the weight�step
is only dependent on the sequence of signs� not on the
magnitude of the derivative� For that reason� learning is
spread equally all over the entire network� weights near
the input layer have the equal chance to grow and learn
as weights near the output layer�
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