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I. RpropP
A. General Description

Rprop stands for "Resilient backpropagation’ and is a lo-
cal adaptive learning scheme, performing supervised batch
learning in multi-layer perceptrons. For a detailed discus-
sion see also [1], [2], [3]. The basic principle of Rprop is to
eliminate the harmful influence of the size of the partial
derivative on the weight step. As a consequence, only the
sign of the derivative is considered to indicate the direc-
tion of the weight update. The size of the weight change
is exclusively determined by a weight-specific, so-called
‘update-value’ Ag;):
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where (,f’w—i(t) denotes the summed gradient information

over all patterns of the pattern set (’batch learning’).

It should be noted, that by replacing the A;;(t) by a
constant update-value A, equation (1) yields the so-called
"Manhattan’-update rule.

The second step of Rprop learning is to determine
the new update-values A;;(¢). This is based on a sign-
dependent adaptation process, similar to the learning-rate
adaptation in [4], [5].
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In words, the adaptation-rule works as follows: Every
time the partial derivative of the corresponding weight
w;; changes its sign, which indicates that the last up-
date was too big and the algorithr(n)has jumped over a
t

local minimum, the update-value Ai]»

is decreased by the

factor n~. If the derivative retains its sign, the update-
value is slightly increased in order to accelerate conver-
gence in shallow regions. Additionally, in case of a change
in sign, there should be no adaptation in the succeeding
learning step. In practice, this can be achieved by setting

%(t_l) := 0 in the above adaptation rule (see also the
if

description of the algorithm in the following section).

In order to reduce the number of freely adjustable pa-
rameters, often leading to a tedious search in parameter
space, the increase and decrease factor are set to fixed
values. The choice of the decrease factor = was lead by
the following considerations. If a jump over a minimum
occurred, the previous update-value was too large. For it
cannot be derived from gradient information how much
the minimum was missed, we have to estimate the cor-
rect value. In average it will be a good guess to halve
the update-value (maximum-likelihood estimator), so we
choose n~ := 0.5. The increase factor n on the one hand,
has to be large enough to allow fast growth of the update-
value in shallow regions of the errorfunction, but on the
other hand the learning process can be considerably dis-
turbed, if a too large increase factor leads to persistent
changes of the direction of the weight-step. In several ex-
periments, the choice of nt = 1.2 gave very good results,
independent of the examined problem. Slight variations
of this value did neither improve nor deteriorate conver-
gence time. So in order to get parameter choice more sim-
ple, we decided to constantly fix the increase parameter
tont =1.2.

For Rprop tries to adapt its learning process to the
topology of the errorfunction, it follows the principle of
"batch learning’ or ’learning by epoch’. That means, that
weight-update and adaptation are performed after the gra-
dient information of the whole pattern set 1s computed.

B. Algorithm

The following pseudo-code fragment shows the kernel of
the RPROP adaptation and learning process. The min-
imum (maximum) operator is supposed to deliver the
minimum (maximum) of two numbers; the sign operator



returns +1, if the argument is positive,
ment is negative, and 0 otherwise.

—1, if the argu-

Vi, j Aij(t) =Ny
Vi, j (t -1H)=0
Repeat
Compute Gradient %(t)
For all weights and biases{
if(a(rivb:(t—l) ()>0)then{
A () = minimum (At — 1) * T, Apag)
Awij(t) = — sign (555(1)) * Ay (t)
wij(t+ 1) = wij(1) + Awij(t)
OB (4 1) = 2E ()

dw,j T OQwyy

}

else if (2£ (t —1)* ( ) < 0) then {
A;j(t) = maximum (Aij(t = Dyxn7, Dpn)
6(30E,j (t - 1) =0

}

else if ( (t —1)* ( ) =0) then {
Awg;(t) = — sign (a?UE (1)) * A1)

wi]'(t + 1) = wz’j(t) + Awii( )

g5 (= 1) = 555 (1)

1

Until (converged)

C. Parameters

the initial
update-value Ay and a limit for the maximum step size,
Amax~

When learning starts, all update-values are set to an
initial value Ag. Since Ag directly determines the size
of the first weight step, it should be chosen according to
the initial values of the weights themselves, for example
Ag = 0.1 (default setting).

rather uncritical, for it is adapted as learning proceeds.

The Rprop algorithm takes two parameters:

The choice of this value 1s

In order to prevent the weights from becoming too large,
the maximum weight-step determined by the size of the
update-value, 1s limited. The upper bound is set by the
second parameter of Rprop, Apae. The default upper
bound is set somewhat arbitrarily to A, = 50.0. Usu-
ally, convergence 1s rather insensitive to this parameter as
well. Nevertheless, for some problems it can be advanta-
geous to allow only very cautious (namely small) steps, in
order to prevent the algorithm getting stuck too quickly
in suboptimal local minima. The minimum step size 1s
constantly fixed to A, = le™®

D. Discusston

To summarize, the basic principle of Rprop is the direct
adaptation of the weight update-values A;.
to learning-rate based algorithms (as for example gradi-
ent descent), Rprop modifies the size of the weight-step
directly by introducing the concept of resilient update-

In contrast

values. As a result, the adaptation effort is not blurred by
un-foreseeable gradient behaviour. Due to the clarity and
simplicity of the learning laws, there is only a slight ex-
pense in computation compared with ordinary backprop-
agation.

Besides fast convergence, one of the main advantages of
RPROP lies in the fact, that for many problems no choice
of parameters is needed at all to obtain optimal or at least
nearly optimal convergence times.

Another often discussed aspect of common gradient de-
scent 1s, that the size of the derivative decreases expo-
nentially with the distance between the weight and the
output-layer, due to the limiting influence of the slope of
the sigmoid activation function. Consequently, weights far
away from the output-layer are less modified and do learn
much slower. Using RPROP, the size of the weight-step
is only dependent on the sequence of signs, not on the
magnitude of the derivative. For that reason, learning is
spread equally all over the entire network; weights near
the input layer have the equal chance to grow and learn
as weights near the output layer.
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