Advanced Supervised Learning in Multi-layer Perceptrons -

From Backpropagation to Adaptive Learning Algorithms

Martin Riedmiller
Institut fur Logik, Komplexitat und Deduktionssyteme

University of Karlsruhe
W-76128 Karlsruhe
FRG

riedml@ira.uka.de

Abstract— Since the presentation of the back-
propagation algorithm [1] a vast variety of im-
provements of the technique for training the
weights in a feed-forward mneural network have
been proposed. The following article introduces
the concept of supervised learning in multi-layer
perceptrons based on the technique of gradient de-
scent. Some problems and drawbacks of the orig-
inal backpropagation learning procedure are dis-
cussed, eventually leading to the development of
more sophisticated techniques.

This article concentrates on adaptive learning
strategies. Some of the most popular learning al-
gorithms are described and discussed according
to their classification in terms of global and local
adaptation strategies.

The behavior of several learning procedures on
some popular benchmark problems is reported,
thereby illuminating convergence, robustness, and
scaling properties of the respective algorithms.

I. INTRODUCTION

At present, supervised learning is probably the most fre-
quently used technique in the field of neural networks.
A teacher provides training examples of an arbitrary
mapping which the network is to learn. Learning in
this context means incremental adaptation of connection
weights that transport information between simple pro-
cessing units.

In fact, this sort of learning can be expressed as a min-
imization problem over a many dimensional parameter
space, namely the vector space spanned by the weights.

A typical technique to perform this kind of optimization
is gradient descent. The learning rule of the most pop-
ular supervised learning procedure, the backpropagation
algorithm [1], follows the principle of gradient descent.
Section II outlines supervised learning in multi-layer per-
ceptrons, and describes the backpropagation algorithm.

After a short discussion of possible problems and pit-
falls of the basic algorithm, a selection of more elaborate
learning techniques is presented. Section III is dedi-

cated to the introduction and discussion of global adap-
tive learning algorithms, especially the class of conjugate
gradient methods. Several local adaptive learning rules
are introduced in Section IV. The last part of the article
discusses the performance of backpropagation and several
adaptive variations on a couple of benchmark problems.
Some important properties of learning procedures are then
examined and compared.

II. FOUNDATIONS

A. Multi-layer Perceptrons

A multi-layer perceptron is a feed-forward neural network,
consisting of a number of units (neurons) which are con-
nected by weighted links. The units are organized in sev-
eral layers, namely an input layer, one or more hidden
layers, and an output layer. The input layer receives an
external activation vector, and passes it via weighted con-
nections to the units in the first hidden layer. These com-
pute their activations and pass them to neurons in suc-
ceeding layers (Figure 1).

From a distal point of view, an arbitrary input vector is
propagated forward through the network, finally causing
an activation vector in the output layer. The entire net-
work function, that maps the input vector onto the output
vector is determined by the connection weights of the net.

Output-Layer

Hidden-Layer

Input-Layer

external input

Figure 1: Topology of a typical feed-forward network with
one hidden layer. The external input is presented to
the input layer, propagated forward through the hidden
layer(s) and yields an output activation vector in the out-
put layer.

Each neuron i in the network is a simple processing
unit that computes its activation s; with respect to its
incoming excitation, the so-called net input net;:

neti = E S Wij — lgl

j€Epred(i)

where pred(i) denotes the set of predecessors of unit ¢,
w;; denotes the connection weight from unit j to unit 1,
and #; is the unit’s bias value. For the sake of a homoge-
neous representation, #; is often substituted by a weight
to a ’bias unit’ with a constant output 1. This means that
biases can be treated like weights, which is done through-
out the remainder of the text.

The activation of unit ¢, s;, is computed by passing the
net input through a non-linear activation-function. Usu-
ally, the sigmoid logistic function

1
$i = flog(net;) = T eonets

is used. A nice property of this function is its easily
computable derivative:

882'
Onet;

= f{og(neti) =s;%(1—s)

B. Supervised Learning

In supervised learning, the objective is to tune the weights
in the network such that the network performs a desired
mapping of input to output activations. The mapping is
given by a set of examples of this function, the so-called
pattern set P.

Each pattern pair p of the pattern set consists of an
input activation vector P and its target activation vector
tP. After training the weights, when an input activation
zP is presented, the resulting output vector sP of the net
should equal the target vector ¢¥. The distance between
the target and the actual output vector, in other words
the fitness of the weights, is measured by the following
energy or cost function E:

_ 1 2
Be= o Y0 - o) g
pEP n

where n is the number of units in the output layer.
Fulfilling the learning goal now is equivalent to finding a
global minimum of E. The weights in the network are
changed along a search direction d(), driving the weights

in the direction of the estimated minimum:

Aw(t) = exd(1)
w(t+1) = w(t) + Aw(t)

where the learning parameter ¢ scales the size of the
weight-step. To determine the search direction d(?), first
order derivative information, namely the gradient VE :=
% is commonly used.

The backpropagation algorithm, introduced in the next
section, performs successive computation of VE by prop-
agating the error back from the output layer towards the

input layer.

C. The Backpropagation Algorithm

The basic idea, used to compute the partial derivatives
(ffw—b:j for each weight in the network, is to repeatedly apply
the chain rule:

OF _3E%

6wij o 852» Wi

(2)

where
Js; 0s; Onet; ,
= = net;) s; 3
6wij 6neti 8wij flo‘q(Z) J ()
To compute %, or the influence of the output s; of

unit ¢ on the global error £, the following two cases are
distinguished:

e If i is an output unit, then

6E lﬁti—si‘?
i R B RO

e If 7 is not an output unit, then the computation of

% is a little more complicated. Again, the chain

rule is applied:

652' k€ suce(i) 88k 8&
B E (9_E Osp Onety,
o ke smec(i) Osp Onetp Os;
oF
= Y. —flyhe)wn (5)
 Osg
k€ suce(i)

where suce(i) denotes the set of all units £ in succes-
sive layers (successive means closer to the output layer) to
which unit ¢ has a non-zero weighted connection wg;.

Equation (5) assumes knowlegde of the values % for
the units in successive layers to which unit 7 is connected.
This can be provided by starting the computation at
the output layer (4) and then successively computing the
derivatives for the units in preceding layers, applying (5).

In other words, the gradient information is successively
moved from the output-layer back towards the input-layer.
Hence the name "backpropagation algorithm’.

D. Gradient Descent

Once the partial derivatives are known, the next step
in backpropagation learning is to compute the resulting
weight update. In its simplest form, the weight update
is a scaled step in the opposite direction of the gradient,
in other words the negative derivative is multiplied by
a constant value, the learning-rate €. This minimization
technique is commonly known as ’gradient descent’:

Aw(t) = —ex VE(t) (6)
or, for a single weight:
Duwii(t) = —ex 22 (1) (7)

8wij

Although the basic learning rule is rather simple, it is
often a difficult task to choose the learning-rate appropri-
ately. A good choice depends on the shape of the error-
function, which obviously changes with the learning task
itself. A small learning-rate will result in long convergence
time on a flat error-function, whereas a large learning-rate
will possibly lead to oscillations, preventing the error to
fall below a certain value. Moreover, although conver-
gence to a (local) minimum can be proven under certain
circumstances, there is no guarantee that the algorithm
finds a global minimum of the error-function.

Another problem with gradient descent is the ’'contra
intuitive’ influence of the partial derivative on the size
of the weight-step. If the error-function is shallow, the
derivative is quite small, resulting in a small weight step.
On the other hand, in the presence of steep ravines in the
energy landscape, where cautious steps should be taken,
large derivatives lead to large weight steps, possibly taking
the algorithm to a completely different region of weight
space (Figure 2).

E(w)

Figure 2: Problem of gradient descent: The weight-step is
dependent on both the learning parameter and the size of

the partial derivative %

An early idea, introduced to make learning more stable,
was to add a momentum term:

A‘wi]' (t) = —¢ aE

a'wi]' (t) +u Awij (t — 1) (8)

The momentum parameter p scales the influence of the
previous weight-step on the current one. It should be
noted that although this technique works well on many
learning tasks, this is not a general technique for gaining
stability or speeding up convergence. Sometimes, com-
parable or even better results can be achieved by using
no momentum term at all. Usually, when using gradi-
ent descent with momentum, the learning-rate should be
decreased to avoid unstable learning.

E. Learning by pattern versus. Learning by epoch

Basically there are two possible methods for computing
and performing weight-update, depending on when the
update is performed.

In the ’learning by pattern’ method, a weight-update is
performed after each presentation of a pattern pair and the
computation of the respective gradient. This is also known
as ’online learning’ or ’stochastic learning’, because one
tries to minimize the overall error by minimizing the error
for each individual pattern pair, and these are not actually
the same. This method works especially well for large

pattern sets containing substantial amounts of redundant
information.

An alternative method, known as ’learning by epoch’,
first sums gradient information for the whole pattern set,
then performs the weight-updates. This method is also
known as ’batch learning’. Each weight-update tries to
minimize the summed error of the pattern set, in other
words the error-function defined in (1). The adaptive pro-
cedures described in the following section use the latter
type of learning, because the summed gradient informa-
tion for the whole pattern set contains more reliable infor-
mation regarding the shape of the entire error-function.

F. Adaptive Techniques

Many techniques have been proposed to date to deal with
the above mentioned, inherent problems of gradient de-
scent. Most of these have their roots in the well-explored
domain of optimization theory.

These techniques can roughly be divided into two cate-
gories. Algorithms that use global knowledge of the state
of the entire network, such as the direction of the over-
all weight-update vector, are referred to as ’global’ tech-
niques. There are many examples where adaptive learn-
ing algorithms make use of global knowledge [2], [3]. One
class of global algorithms, the conjugate gradient method,
is discussed in the following section.

By contrast, local adaptation strategies are based on
weight-specific information only, such as the temporal be-
havior of the partial derivative of this weight. The local
approach is more closely related to the neural network
concept of distributed processing in which computations
can be made in parallel. Furthermore, it appears that for
many applications local strategies work far better than
global techniques,; although they use less information and
are often much easier and faster to compute [4].

III. GLoBAL ADAPTIVE TECHNIQUES

The following presents a short review of some global adap-
tation techniques. A good introduction to the foundation
of several optimization approaches can be found in [5].

A. Steepest Descent

While the gradient descent technique used in the standard
backpropagation algorithm performs weight-update by a
constant scaling € of a search direction d(t) = —VE(t),
the ’steepest descent’ procedure tries to take an optimal
weight-step by finding an individual scaling parameter €(t)
each iteration.

Determining such an optimal parameter can be re-
garded as a one-dimensional optimization problem known
as ’line search’. In the simplest case, a small initial
learning-rate is used, which is iteratively increased until
the error-function no longer decreases.

Unfortunately, for every iteration the evaluation of the
error-function £ is required, which means a costly forward
propagation of the whole pattern set to compute the new
value of E. In general, more elaborate methods for line
search must be used, such as the false position method,
which typically converges in 2-3 iterations [6].

When applying the method of steepest descent, it can be
shown that two successive weight-steps are necessarily per-
pendicular. Assume that an ¢ has been found that yields
an optimal weight-step, which means that ﬂ%zill =0.
Then,

OE(w(t+1)) OFE(w(t+1)) 0(w(t) +exd(t))
Oe a Jw(t +1) Oe
= VE(@{+1)d(t)
0 (9)

This means that the new gradient VE(t + 1), which
determines the new direction d(¢ 4+ 1), and the old search
direction d(t) are perpendicular. This relation is finally
used to improve the performance of the steepest descent
procedure, as it is done by conjugate gradient methods
described in the following section.

B. The Conjugate Gradient Method

Finding an optimal learning-rate is a costly iterative pro-
cedure, so we do not want to completely destroy this effort
in succeeding steps. Accordingly, the condition found in
equation (9) should also hold for the following weight-step,
namely

d(t)VE(t+2)=0
It can be shown that condition (10) is fulfilled, if

(10)

d(t)H d(t + 1) =0 (11)

where H denotes the Hessian matrix, containing the sec-
ond order derivatives of the weights. Two vectors fulfilling
condition (11) are called ’conjugate’.

To determine the new search direction d(t + 1) that
fulfills (11) we set:

dit+1):==-VE({t+1)+ B*d(?)

This means that the new search direction is a combina-
tion of both the direction indicated by the gradient and
by the previous search direction.

The parameter § is computed for example according to
the Polak-Ribiere rule:

(VE(t+1) - VE®)VE(t + 1)

= (VEQ))?

As in the steepest descent procedure, a line search tech-
nique has to be applied to find an optimal learning-rate
that minimizes the error along the new search direction
dit+1).

According to the reported results on several small bi-
nary classification tasks [6], the higher expense of the con-
jugate gradient computation (line search 4+ Polak Ribiere)
is compensated very well by a much faster convergence
compared with backpropagation learning. However, as
shown in a recent comparison on a real world benchmark
[4], global optimization techniques can experience severe
problems with convergence when applied to larger learn-
ing tasks.

IV. LocaL ADAPTIVE TECHNIQUES
A. The Delta-Bar-Delta Rule

To overcome the drawbacks of the simple backpropaga-
tion weight update, Jacobs [7] proposed weight-specific
learning-rates, since the error-function may have a differ-
ent shape with respect to the one-dimensional view of each
weight in the network. Because of this, Jacobs introduced
a second learning law, which determines the evolution of a
learning-rate according to a local estimation of the shape
of the error-function.

This estimation is based on the observed behavior of
the partial derivative during two successive weight-steps.
If the derivatives have the same sign, the learning-rate is
linearly increased by a small constant to accelerate learn-
ing in shallow regions. On the other hand, a change in
sign of the two derivatives indicates that the procedure has
overshot a local minimum; the previous weight-step was
too large. As a consequence, the learning-rate is exponen-
tially decreased by multiplying it with a decreasing-factor
smaller than unity:

(t-1) if ﬂ(t_l) ﬂ(t)

K+ € ; EI * 2w,; >0
df = e AR g <0 (2)
65‘;_1) , else

with 0 <n™ <1

The weight-update itself is the same as with backpropa-
gation learning, except that the fixed global learning-rate
€ is replaced by a weight-specific, dynamic learning-rate

Eij(t)Z

oF

Awij(t) = =i (t) 75—
ij

() +nbugt—1) (13)
As reported in [7], the Delta-Bar-Delta converges faster
than backpropagation and is more robust with respect to

choice of parameters.

B. SuperSAB

SuperSAB [8] is also based on the idea of sign-dependent
learning-rate adaptation, as just described with the Delta-
Bar-Delta method. A very similar approach can be found
in [9].

The basic change is to increase the learning-rate expo-
nentially instead of linearly as with the Delta-Bar-Delta
method. This is done to take the wide range of temporar-
ily suited learning-rates into account.

77+ *65;_1) L if E)f)w—E,j(t_l) % %(ﬂ >0
qf = et ARV 220 g (1)
eg;_l) , else

with0<n™ <1l<npt

Moreover, in case of a change in sign of two successive
derivatives, the previous weight-step is reverted.

SuperSAB has shown to be a fast converging algorithm,
that is often considerably faster than ordinary gradient
descent. One possible problem of SuperSAB is the large
number of parameters that need to be determined in or-
der to achieve good convergence times, namely the initial
learning-rate, the momentum factor, and the increase (de-
crease) factors.

Another drawback, inherent to all learning-rate adap-
tation algorithms, is the remaining influence of the size of
the partial derivative on the weight-step:

FE
* M(t) + pAwi(t—1)

Awij(t) = —€i(t)
Despite careful adaptation of the learning-rate, the
derivative itself can have an un-foreseeable influence on
the size of the weight-step. For example consider the
situation, where a very shallow error-function leads to a
permanent increase of the learning-rate. Although the
learning-rate grows rather large, the resulting weight-step
remains small, due to the small partial derivative. When
suddenly a region of steep descent is reached, probably
indicating the presence of a minimum, the resulting large
derivative is scaled by the large learning-rate, pushing the
weight in a region far away from the previous (promising)
position (Figure 2).

C. Quickprop

A completely different approach to local adaptive learning
is that of Fahlman [10], in which the local error-function
for each weight is assumed to be a 'parabola whose arms
are opened upward’, and that the slope of the curve is
not affected by changing all other weights in the network.
Estimates of the position of the minimum for each weight
are obtained by solving the following equation for the two
following partial derivatives %(t — 1) and fw—i(t):

3

oF
611)1_7' (t)

g (t—1) = F (1)

Qwij Qwij

Awij (t) =

Aw(t—1) (15)

It can be shown that this weight update is equivalent
to a local application of Newton’s approximation method,
which can be derived from the first order Taylor series ex-
pansion for the approximation of the error. The objective
is to find a minimum of f(z), and this is done by search-
ing for an 2 for which f’(#) = 0. Under the assumption
that f/(z) is convex, Newton’s method iteratively com-
putes updates of z according to the following equation:

z(t+ 1) = 2(t) + Ax(t) (16)

where

f'(=(t))

Ax(t) = ————7=%

O= "7

If the second order information f”(z) is not easily avail-

able (as it is the case for the weights in a neural network),
an approximation is made using the first order derivatives:

(17)

f(z(t) = f'(=(t=1))
z(t)—z(t—1)
fz(t) = f'(=(t=1))
Ax(t—1)

Substituting (18) in (17) then yields:

(=)

F((0)
Fa) = Fel=1)
B F (1)) o

= Fea-1) - Fam St

This corresponds exactly to the expression given in
equation (15).

Although the main formula for the weight-update (15)
is straightforward and easy to compute, there are a few
modifications necessary, due to violation of the above as-
sumptions. Firstly, the actual update-rule is composed of
both the application of (15) and a small gradient descent
step. Moreover, in order to avoid arbitrary large weight-
steps resulting from a possibly very small denominator in
(15), the present weight-step is restricted to be at most v
times as large as the previous step.

Thus the Quickprop algorithm has two parameters,
these being a learning rate € for gradient descent, and a
second parameter v which limits the step-size (the default
value for v is 1.75).

There is a marked improvement of learning time com-
pared with standard backpropagation, and indeed Quick-
prop is one of today’s most frequently used adaptive learn-
ing paradigms.

Al‘(t) = -

Ax(t—1)

(19)

D. Rprop

Rprop stands for 'Resilient backpropagation’ and is a lo-
cal adaptive learning scheme [11]. The basic principle of
Rprop is to eliminate the harmful influence of the size
of the partial derivative on the weight step. As a con-
sequence, only the sign of the derivative is considered to
indicate the direction of the weight update. The size of
the weight change is exclusively determined by a weight-
specific, so-called 'update-value” A;;:

—Aii(t) , if g () > 0
—|—Aij(t) , if %(t) <0
0,

Awi]’(t) = (20)

else

It should be noted, that by replacing the A;; by a con-
stant update-value A, equation (20) yields the so-called
"Manhattan’-update rule.

The second step of Rprop learning is to determine
the new update-values A;;(t). This is based on a sign-
dependent adaptation process, similar to the learning-rate
adaptation of equation (14).

R L L.
AE;) _ 0~ *AZ(';_D if %(t—l) N aaw_b:j(ﬂ <0 (21)
Ag;_l) , else

where 0 <~ <1< pt

At the beginning, all update-values are set to an initial
value Ag, which is one of two parameters of Rprop. Since
Ao directly determines the size of the first weight step,
it should be chosen according to the initial values of the
weights themselves, for example Ay = 0.1. The choice of
this value is rather uncritical, for it is adapted as learning
proceeds.

In order to prevent the weights from becoming too large,
the maximum weight-step determined by the size of the
update-value, is limited. The upper bound is set by the
second parameter of Rprop, Apqz. The default upper
bound is set somewhat arbitrarily to A, = 50.0. Usu-
ally, convergence is rather insensitive to this parameter as
well. Nevertheless, for some problems it can be advanta-
geous to allow only very cautious (namely small) steps, in
order to prevent the algorithm getting stuck too quickly
in suboptimal local minima.

The increase and the decrease factor are fixed to nt =
1.2 and n~ = 0.5. These values are based on both the-
oretical considerations and empirical evaluations. This
reduces the number of free parameters to two, namely A

and Az

To summarize, the basic principle of Rprop is the di-
rect adaptation of the weight update-values A;;. In con-
trast to the learning-rate based algorithms described ear-
lier, Rprop modifies the size of the weight-step directly by
introducing the concept of resilient update-values. Asare-
sult, the adaptation effort is not blurred by un-foreseeable
gradient behaviour. Due to the clarity and simplicity of
the learning laws, there is only a slight expense in compu-
tation compared with ordinary backpropagation.

Rprop suffers from the same problem as does any of the
above mentioned adaptive learning algorithms. Because
the adaptation is based on an estimation of the topology
of the error-function, both adaptation and weight update
can be first performed after the whole gradient informa-
tion is available, in other words after each pattern has
been presented and the gradient of the sum of pattern er-
rors is known. Accordingly, adaptive learning procedures
are typically based on ’learning by epoch’. This possibly
reduces their efficiency on redundant training sets com-
pared to a simple stochastic gradient descent and poses
problems on their use with variable training sets.

Moreover, a restricted local adaptation scheme inher-
ently lacks the overall view that global techniques may
have. If for example, an optimal search direction for the
minimum lies along the diagonal, a local scheme will try to
decrease the error in each dimension, by carefully search-
ing the local minimum with small weight-steps; it will
not increase the composite weight-step along the diago-
nal, which would be the more appropriate approach in
this case.

Nevertheless, the results reported in the following sec-
tion show the favorable properties of local adaptation
strategies in practical applications.

V. COMPARATIVE STUDIES

A good learning algorithm should fulfill at least the fol-
lowing requirements:

e fast convergence
e casy parameter choice

e good generalization ability on unknown inputs

Due to the wide variety of different learning problems
with different requirements and different goals it is not
easy to establish a fair comparison between the many vari-
ants of supervised learning techniques. Nearly as many
benchmark problems are reported in the literature as new
learning algorithms. This is not surprising, since every
new variant solves a specific learning problem faster than
most other techniques, and certainly faster than backprop-
agation.

One of the most famous benchmark problems is the ’ex-
clusive or’ (XOR) problem, or in its more general form,
the N-parity problem. Following the argumentation of
Fahlman [10], this is not a typical benchmark for the
real world problems solved with neural networks. The
highly desired ability of a network to generalize, that is to
map similar input patterns to similar output activations,
doesn’t apply with XOR. A single change of a bit in the
input vector requires a complementary classification. The
reason why we include N-parity problems here is that they
are often used in the literature to benchmark new learning
algorithms.

A better class of benchmarks is the family of the N-M-N
encoder problems. The network consists of N units each in
the input and output layers, and M neurons in the hidden
layer. The input vector comprises N bits, one of which is
set to '1’, and the remaining bits set to '0’. The output
(target) vector is identical to the input, so the task of the
network is to perform an auto-association between input
and output vectors. The objective is to learn a mapping of
N input units to M hidden units (encoding) and a mapping
of M hidden units to N output units (decoding), where in
general M < N. If M <log, N we refer to this mapping
as a ‘tight encoder’.

A. Testing Conditions

In the following experiments the performance of several
algorithms was tested in twenty runs, each with a differ-
ent initial weight setting. The weights were chosen ran-
domly within a certain range. Learning time is reported
as the average number of epochs! required until the tasked
was learned. If a run failed to converge, its convergence
time is set to a benchmark-dependent maximum number
of epochs. The number of converged runs is reported in
the ’success’ row of each table.

Following Fahlman’s suggestions as to how results
should be reported, learning of binary tasks is complete,
if a ’40-20-40’ criterion is fulfilled: an output is considered
to be a logical zero if it is in the lower 40% of the output

1 An epoch is defined as the period during which every pattern of
the training set is presented once

range, a one if it is in the upper 40%, and indeterminate
(and therefore incorrect) if it is in the middle 20% of the
range.

A wide variety of parameter values was tested in order
to find a correspondingly good choice for each learning
algorithm. However, in practice it is often undesirable
or even impossible to perform large parameter test series,
due to time or hardware constraints. Moreover, the easier
it is to find a parameter setting that allows fast and ro-
bust convergence, the better the algorithm will be suited
for practical application. The sensitivity of the average
number of required epochs on a good choice of the initial
learning parameter is shown in the figures which follow.

The tables show the average number of epochs required
using the best parameter setting. The comparison was
performed for the following learning procedures: Back-
propagation by epoch (BP), SuperSAB (SSAB), Quick-
prop (QP) and Rprop.

In the following, ¢ denotes the (initial) learning-rate
(BP, SSAB, QP), A¢ denotes the initial update-value
(RPROP), Apgy is the maximum step size (RPROP), u
is the momentum (BP, SSAB), and v denotes the maximal

growth factor (QP).

B. 3 Bit Parity

This is the 3 bit version of the ’XOR’-problem. The three-
layer-network consists of 3 input, 3 hidden and 1 output
neuron. The target for the output is ’one’; if the number
of ’one’ bits in the input is odd, and ’zero’ otherwise. For
the symmetric nature of the problem we used symmetric
activation functions with a range of [—1,+41]. The max-
imum learning time was set to 100 epochs. The weights
were randomly initialized within the range [—1.0,+1.0].
In summary:

Task: 3 bit parity

Network: 3-3-1 (3 input, 3 hidden, 1 output)
No. of patterns: 23 =38

Activation: symmetric

Max. epochs: 100

Weight initialization:[-1.0,41.0]

B.1. Learning Time

Table 1 shows the results for the different learning algo-
rithms on the 3 bit parity task.

3 Bit Parity
Algorithm | e/ Ao | w/v/Amas || # epochs | success
BP by ep. | 0.2 0.9 17.7 20/20
SSAB 1.0 0.5 19.2 20/20
QP 0.1 183 | 20/20
RPROP 0.07 17.6 20/20

Table 1: 3 Bit Parity: Results for the different learning
procedures

As is clear from this table, all algorithms converge
rather fast when the corresponding best parameter set-
ting was used. Due to the very short convergence time in
general, the adaptive algorithms have no chance to prove

their superiority over pure gradient descent when opti-
mally tuned parameters are used. The ’x’-mark in the
second row of both Rprop and Quickprop means that the
respective default value was used, and that no further tun-
ing was needed for this parameter - in fact both algorithms
only needed tuning of one parameter to achieve their best
result.

B.2. Sensitivity

In the following, we regard the influence of the choice of
learning parameter on the average number of epochs re-
quired. For convenience, we consider the (initial) learning-
rate € for backpropagation, SuperSAB and Quickprop and
the initial update-value Ag for Rprop. The remaining pa-
rameters for each algorithm are set to the values that can
be found in Table 1.

3 Bit Paritiy - Sensitivity
100 BP
90 i
(}3
2 80 v
o
a 70
(&) qu o)
. 60
o
o
° 50
(=2} o
© 40 L -GSAB
5]
% 30 =SS Uiy -y
20 -SSR . 2. e o
10
0. 001 0.01 0.1 1

| ear ni ng paranet er

Figure 3: 3 Bit Parity: Sensitivity of the different learning
procedures to choice of initial learning parameter

As demonstrated in Figure 3, standard backpropagation
is very sensitive to the choice of its learning-rate parame-
ter. A slight deviation from the optimal value causes the
algorithm to consume considerably more learning time.
A little surprising is the obvious sensitivity of the Super-
SAB algorithm, despite its learning-rate parameter being
adapted during learning. This is possibly due to the highly
nonlinear nature of the parity problem. Both Quickprop
and Rprop are rather robust with respect to choice of ini-
tial learning parameter. This is a notable result, since
their second parameters have been set to their default val-
ues (see Table 1).

C. 6 Bit Parity
C.1. Description

Task: 6 bit parity

Network: 6-12-1 (6 input, 12 hidden, 1 output)
No. of patterns: 26 = 64

Activation: symmetric

Max. epochs: 1000

Weight initialization: [-1.0,41.0]

The results of the 6 bit parity problem are reported
to illuminate the scaling properties of the algorithms, in
other words their convergence behavior when the difficulty
of the learning task is increased.

C.2. Learning Time and Sensitivity

Table 2 shows the results obtained using the different
learning algorithms to solve the 6 bit parity problem.

6 Bit Parity
Algorithm | e/ | w/v/Amas || # epochs | success
BP by ep. | 0.3 0.0 2794 | 16/20
SSAB 0.01 0.9 82.6 20/20
QP 0.005 50.5 20/20
RPROP 0.05 52.8 20/20

Table 2: 6 Bit Parity: Results for the different learning
procedures

The 6 bit parity task is considerably more difficult to
learn than the 3 bit version described previously. This
is reflected in the drastically increased number of epochs
required by the backpropagation algorithm (about fifteen
times as high). Moreover, backpropagation failed to con-
verge in 4 of the 20 trials. The use of a momentum term
did not improve convergence on this learning task. In con-
trast to this, all the adaptive algorithms converged in all
twenty runs, being more than 3 times (SuperSAB) or even
more than 5 times as fast (Quickprop, Rprop) compared
with pure gradient descent.

6 Bit Paritiy - Sensitivity
500
450
7] 400 N
< A
] 350 St BE
® 300 S
e 250
3 200
©
5 150 SS
e 100 fooopt :
50 e —Rpro
0
0. 0001 0. 001 0.01 0.1

| ear ni ng paranet er

Figure 4: 6 Bit Parity: Sensitivity of the different learning
procedures to choice of initial learning parameter

Figure 4 shows the superiority of the adaptive algo-
rithms even more impressively. For a wide range (several
magnitudes) of initial values of learning parameter, both
Quickprop and Rprop converge at least 3 times faster than
standard backpropagation. Again, the second parameter
of Quickprop and Rprop could remain set to its default
value, which again simplifies their use.

D. 10-5-10 Encoder
D.1. Description

The 10-5-10 encoder task is a typical benchmark prob-
lem of the N-M-N encoder family described earlier. The
network consists of 10 input units, 5 hidden units and 10
output units. The pattern set contains 10 pattern pairs.
In summary:

Task: 10-5-10 Encoder
Network: 10-5-10
(10 input, 5 hidden, 10 output)
No. of patterns: 10
Activation: logistic
Max. epochs: 500

Weight initialization: [-1.0,41.0]

D.2. Learning Time and Sensitivity

Table 3 shows the average learning times of the different
procedures.

10-5-10 Encoder
Algorithm | e/ Do | w/v/Amas || # epochs | success
BP by ep. | L7 0.0 137.1 | 20/20
SSAB 2.0 0.8 49.2 20/20
QP 1.0 * 21.0 20/20
RPROP 0.7 19.0 20/20

Table 3: 10-5-10 Encoder: Results for the different learn-

ing procedures

This again is an example of a learning task where
the best backpropagation result was achieved using no
momentum. This demonstrates the need to both alter
learning-rate and momentum in order to find a good pa-
rameter setting for standard backpropagation.

10-5-10 Encoder - Sensitivity
500 =
450
%) 400
e
é 350
@ 300
e 250
tBP
% 200 |gopy N
5 150 S
s 100
50 g l® «
0 P
0.001 0.01 0.1 1 10

| ear ni ng paranet er

Figure 5: 10-5-10 Encoder Task: Sensitivity of the differ-
ent learning procedures to choice of initial learning param-
eter

On the 10-5-10 encoder task, Quickprop and Rprop
clearly outperform the other algorithms, needing less than
one sixth of the number of epochs required by backprop-
agation and being more than 2 times faster than Super-
SAB. As far as the influence of choice of learning parame-
ter on learning time is concerned, this task again confirms
the particular robustness of adaptive learning algorithms
against variation of their parameters (Figure 5).

E. 12-2-12 Encoder
E.1. Description

In the next experiment, the learning task was made more
difficult by reducing the number of hidden units, in or-

der to investigate the algorithms’ ability to find sophisti-
cated solutions in weight space. The number of input and
output units was increased to 12, while the width of the
hidden layer was reduced to two neurons.

Task: 12-2-12 "Tight’ Encoder
Network: 12-2-12

(12 input, 2 hidden, 12 output)
No. of patterns: 12
Activation: logistic
Max. epochs: 15000

Weight initialization:[-1.0,41.0]

E.2. Learning Time and Sensitivity
Table 4 shows the results of the 12-2-12 Encoder problem.

12-2-12 "Tight Encoder’
Algorithm | e/ N | w/v/Amas || # epchs | success
BP div. div. > 15000 | 0/20
SSAB 1.0 0.95 536.0 20/20
QP 1.0 1.2 221.0 20/20
RPROP 0.5 * 210 20/20

Table 4: 12-2-12 Encoder: Results for the different learn-
ing procedures

Interestingly, backpropagation was not able to learn the
task in under 15,000 epochs, despite many different pa-
rameter settings being tested. On the other hand, all
adaptive procedures converged rather fast, although both
SuperSAB and Quickprop needed some fine tuning of their
second parameters to do so. Moreover, Quickprop exhib-
ited quite sensitive behavior, depending on the choice of
its first learning parameter. Rprop converged very fast,
using the default setting for its second parameter, and
again was rather insensitive to choice of its first learning
parameter (Figure 6).

12-2-12 Encoder - Sensitivity
1000 :
0 800 [|
< [:
[8] i
o \ P . H
© 600 e B s S9AB s
. Sy AR TINAN NHI
=} ’ |
< F
3 400
©
§ | Rpr op 1 L
® 200 e
0
0.001 0.01 0.1 1

| ear ni ng par anet er

Figure 6: 12-2-12 Encoder Task: Sensitivity of the differ-
ent learning procedures to choice of initial learning param-
eter

The fast and robust convergence of adaptive learning al-
gorithms, and the failure of pure gradient descent, demon-
strates the ability of the advanced techniques to exploit
their adaptability to solve very complex learning tasks in

situations, where a suitable solution in weight space is dif-
ficult to find. We may even conclude that, by using adap-
tive methods, smaller networks with fewer weights can be
used. This will on one the one hand lead to less computa-
tional effort, and on the other hand to better generaliza-
tion ability promoted by a less complex network topology.

F. Two Spirals

The task of this difficult benchmark problem is to discrim-
inate between two spirals which coil three times around
the origin of the x-y plane. The training set consists of 194
points in the plane belonging either to one class (spiral) or
to the other. The network consists of three hidden layers
with 5 units (nodes) per layer. Each unit is connected to
every unit in previous layers (the network uses so called
’short-cut connections’ [12]).

Task: Two Spirals

Network: 2-5-5-5-1 (4shortcut connections)
No. of patterns: 194

Activation: symmetric

Max. epochs: 15000

Weight initialization: [-1.0,41.0]

G. Learning time and sensitivity

Table 5 shows the results on the two spirals problem.

Two Spirals
Algorithm | e/ Do | w/v/Amas || # epchs | success
BP 0.0008 0.9 8830 9/20
SSAB 0.01 0.9 10015 8/20
QP 0.00005 1.3 8415 12/20
RPROP 0.001 0.1 2605 19/20

Table 5: Two Spirals Task: Results for the different learn-
ing procedures

The difficulty of this benchmark is reflected not only
in the large number of epochs but also in the high fail-
ure rates. In subsequent experiments we further discov-
ered that convergence is highly dependent on the range of
weight initialization.

When a careful parameter tuning was applied, the per-
formance of standard backpropagation was comparable
with both SuperSAB and Quickprop. Convergence was
reached in 9 out of 20 runs for backpropagation, and in
8 out of 20 runs for SuperSAB. Quickprop worked more
reliably and converged in 12 runs. The best result for
Quickprop was achieved using a cautious setting for its
second parameter (v = 1.3). Rprop achieved the best re-
sult on this benchmark, converging in 19 out of 20 runs,
and thereby being more than 3 times faster than the other
algorithms. For this difficult and highly nonlinear prob-
lem, Rprop’s second parameter was chosen considerably
smaller than its default value. Again, the tuning of the
first parameter was rather non critical (Figure 7).

VI. CoNCLUSION

This article gives an overview over past and recent devel-
opments in algorithms for supervised learning in multi-
layer perceptrons.

Two Spirals - Sensitivity
14000 '
BD
»w 12000
<
o
§ 10000 SSAB
5 8000 Q>
o
o} 6000
©
3 4000 S
© REBALEH I o Rpr op
2000
0
le-05 0.0001 0.001 0.01 0.1

| ear ni ng paranet er

Figure 7: Two Spirals Task: Sensitivity of the different
learning procedures to choice of initial learning parameter

All approaches described here make use in some man-
ner of the first order partial derivative of each weight with
respect to the overall network error. This gradient infor-
mation can easily be computed by the backpropagation
algorithm. The variety of proposed weight learning rules
ranges from a simple gradient descent (commonly referred
to as ’backpropagation learning’) to more sophisticated
global and local adaptation techniques.

Many of the proposed procedures, especially the global
techniques, are based on ideas from many dimensional op-
timization theory, and often require increased computa-
tion.

As demonstrated on a couple of representative bench-
mark problems the local adaptive algorithms, especially
Quickprop and Rprop, converge considerably faster than
the ordinary gradient descent algorithm. What is proba-
bly even more significant from a practical perspective is
the drastically improved robustness of the adaptive algo-
rithms with respect to choice of initial parameters.

It appears, that their very simple and straightforward
local adaptation rules are very effective for the type of
function minimization required in the context of multi-
layer neural networks.

REFERENCES

[1] D. E. Rumelhart, G. Hinton, and R. Williams. Learn-
ing internal representations by error propagation. In
D. E. Rumelhart and J.L. McClelland, editors, Paral-

lel Distributed Processing, Vol. I Foundations, pages
318-362. MIT Press, Cambridge, MA, 1986.

R. Salomon. Improved convergence rate of backprop-
agation with dynamic adaptation of the learning rate.
In H.-P. Schwefel and R. Manner, editors, Lecture
Notes in Computer Science, PPSN 1, pages 269-273,
Dortmund, 1990. Springer-Verlag.

M. F. Moller. A scaled conjugate gradient algo-
rithm for fast supervised learning. Neural Networks,

6(3):525-533, 1993.

W. Schiffmann, M. Joost, and R. Werner. Optimiza-
tion of the backpropagation algorithm for training

[10]

[11]

multilayer perceptrons. Technical report, University
of Koblenz, Institute of Physics, 1993.

J. Hertz, A. Krogh, and R. Palmer. Introduction to
the theory of neural computation. Addison-Wesley,
Redwood City, CA 94065, 1991.

A. Kramer and S. Vincentelli. Efficient parallel learn-
ing algorithms for neural networks. In D.Touretzky,
editor, Advances in Neural Information Processing,
volume I, San Mateo, 1989. Morgan Kauffman.

R. Jacobs. Increased rates of convergence through
learning rate adaptation. Neural Networks, 1(4),
1988.

T. Tollenaere. Supersab: Fast adaptive backpropaga-
tion with good scaling properties. Neural Networks,

3(5), 1990.

Fernando M. Silva and Luis B. Almeida. Speeding up
backpropagation. In R. Eckmiller, editor, Advanced
Neural Computers, pages 151-158. North-Holland,
Amsterdam, 1990.

S. E. Fahlman. An empirical study of learning speed
in back-propagation networks. Technical report,

CMU-CS-88-162, Carngie-Mellon University, 1988.

M. Riedmiller and H. Braun. A direct adaptive
method for faster backpropagation learning: The
RPROP algorithm. In H. Ruspini, editor, Proceed-
ings of the IEEE International Conference on Neural
Networks (ICNN), pages 586 — 591, San Francisco,
1993.

K. Lang and M. Witbrock. Learning to tell two spirals
apart. In Proceedings of 1988 Connectionist Models
Summer School. Morgan Kaufmann, 1988.

